Analisis Sentimen Netizen Twitter Terhadap Program Makan Siang Gratis Menggunakan Algoritma Naïve Bayes

Asniati Asniati, Sultan Hady, Ista Nurlia Tolanto

Abstract


The Free Lunch Program is a government policy designed to improve the nutritional status and health of students at the primary and secondary education levels. The initiative has generated diverse public responses, particularly on social media, where Twitter functions as a major platform for rapid and open opinion exchange. Therefore, this study aims to analyze public sentiment toward the Free Lunch Program using a machine-learning approach to obtain a quantitative overview of public perceptions. The research process began with data collection using Tweet-Harvest, followed by a preprocessing stage that included text cleaning, normalization, tokenization, and stop-word removal. Afterward, sentiment labeling and class balancing were performed to reduce bias, and feature extraction using Term Frequency–Inverse Document Frequency (TF-IDF) was applied to generate informative text representations. A classification model was then constructed using the Multinomial Naïve Bayes algorithm because of its suitability for high-dimensional textual data. The evaluation results showed that the model achieved an accuracy of 61%, with the highest performance recorded in the positive sentiment class compared with neutral and negative classes. In addition, this study produced a Streamlit-based web application capable of performing automatic and interactive sentiment analysis. These findings indicate that the public tends to view the Free Lunch Program positively, while also demonstrating the effectiveness of machine-learning methods for mapping opinion through social-media text data.


Keywords


Keywords: sentiment analysis, (Naïve Bayes; Free Lunch Program; Twitter; Streamlit)

Full Text:

PDF

References


S. Samsir, A. Ambiyar, U. Verawardina, F. Edi, dan R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 1, hlm. 157, Jan 2021, doi: 10.30865/mib.v5i1.2580.

S. Lestari dan S. Saepudin, “Analisis Sentimen Vaksin Sinovac Pada Twitter Menggunakan Algoritma Naive Bayes,” SISMATIK Semin. Nas. Sist. Inf. Dan Manaj. Inform., vol. 1, hlm. 163–170, 2021.

D. Duei Putri, G. F. Nama, dan W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” J. Inform. Dan Tek. Elektro Terap., vol. 10, no. 1, Jan 2022, doi: 10.23960/jitet.v10i1.2262.

M. A. Arianto dan A. Solichin, “Analisis Sentimen MotoGP Mandalika Pada Twitter Menggunakan Metode Naïve Bayes,” J. Ticom Technol. Inf. Commun., vol. 11, no. 1, hlm. 20–25, Sep 2022, doi: 10.70309/ticom.v11i1.66.

A. Safira dan F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” ZONAsi J. Sist. Inf., vol. 5, no. 1, hlm. 59–70, Jan 2023, doi: 10.31849/zn.v5i1.12856.

K. S. Putri, I. R. Setiawan, dan A. Pambudi, “Analisis Sentimen Terhadap Brand Skincare Lokal Menggunakan Naïve Bayes Classifier,” Technol. J. Ilm., vol. 14, no. 3, hlm. 227, Jul 2023, doi: 10.31602/tji.v14i3.11259.

N. Q. Rizkina dan F. N. Hasan, “Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes,” J. Inf. Syst. Res. JOSH, vol. 4, no. 4, hlm. 1136–1144, Jul 2023, doi: 10.47065/josh.v4i4.3803.

J. F. Sianipar, Y. R. Ramadhan, dan I. Jaelani, “Analisis Sentimen Pembangunan Kereta Cepat Jakarta-Bandung di Media Sosial Twitter Menggunakan Metode Naive Bayes,” KLIK Kaji. Ilm. Inform. Dan Komput., vol. 4, no. 1, hlm. 360–367, 2023, doi: https://doi.org/10.30865/klik.v4i1.1033.

T. Agustiranti, A. K. Izzati Kurdiana, B. Al Ghiffari, E. Dwi Juniar, dan D. Gita Purnama, “Penerapan Naive Bayes Terhadap Sentimen Analisis Media Sosial Twitter Pengguna Kereta Cepat Jakarta-Bandung (Whoosh),” J. Ilmu Komput. Dan Sist. Inf. JIKOMSI, vol. 7, no. 1, hlm. 297–305, Mar 2024, doi: 10.55338/jikomsi.v7i1.2946.

A. Gaizka, A. R. Dzikrillah, dan E. Sinduningrum, “Analisis Sentimen Masyarakat Sebelum Dan Sesudah Terpilihnya Gibran Sebagai Cawapres Prabowo Menggunakan Naïve Bayes,” KLIK Kaji. Ilm. Inform. Dan Komput., vol. 4, no. 6, hlm. 2830–2841, 2024, doi: https://doi.org/10.30865/klik.v4i6.1876.




DOI: https://doi.org/10.55340/jiu.v14i2.2582

Refbacks

  • There are currently no refbacks.


__________________________________________________________________________________________________________________________________________________

Editorial Address :

Program Studi Teknik Informatika, Fakultas Teknik, Universitas Dayanu Ikhsanuddin Jl. Dayanu Ikhsanuddin no.124 Baubau, Sulawesi Tenggara 

Jurnal Informatika by Program Studi Teknik Informatika, Fakultas Teknik, Universitas Dayanu Ikhsanuddin Baubau, Indonesia is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Based on work at https://ejournal.unidayan.ac.id/index.php/JIU